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Abstracts: In this paper, the issue of two-dimensional direction-of-arrival (DOA) estimation for two 

parallel uniform linear arrays (TPULA) is studied, and a simple method for the angle estimation based on 

sparse representation (SR) is proposed. Through the SR of the cross covariance vector, the proposed 

algorithm can achieve automatically paired two-dimensional DOA estimation using just one-dimensional 

dictionary. The algorithm requires neither eigenvalue-decompositions nor prior knowledge of the source 

numbers. Furthermore, it has better estimation performance than the improved propagator method (PM) 

and DOA-matrix method, especially with low signal-to-noise ratio (SNR). The simulation results 

verify the effectiveness of the proposed algorithm. 

Key-words: two-dimensional DOA estimation; two parallel uniform linear arrays; sparse representation; 

cross covariance matrix. 

1. Introduction  

The problem of two dimensional (2D) direction-of-arrival (DOA) estimation is a key issue in array signal 

processing for its applications in many fields including radar, sonar, wireless communication and so on 

[1]-[5]. 2D DOA estimation with two parallel uniform linear arrays (TPULA) has been studied by lots of 

researchers for its special array structure [6]-[7], [9]-[11]. A DOA-matrix method was proposed in [6], 
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which can obtain the DOA estimations without additional pairing match. A polynomial root-finding 

method for DOA estimation with TPULA was proposed in [7], which can exploit the full array aperture. 

Subspace-based methods can obtain high-resolution angle estimations, but the requirement of the 

eigenvalue decomposition (EVD) of the covariance matrix makes them hard to implement. Propagator 

method (PM) [8] is well-known for it is free of EVD of the covariance matrix, so a fast DOA estimation 

algorithm based on PM for TPULA was proposed in [9]. Ref.[10] presented a more computationally 

efficient DOA estimation method via the shifts of the arrays, but it has worse angle estimation 

performance. An improved PM-based method was proposed in [11], which has improved estimation 

performance than the method in [9], but the estimation performance degrades quickly when the 

signal-to-noise ratio (SNR) is low. 

Sparse representation (SR) based method for DOA estimation has attracted lots of attention for its 

super-resolution property and it is easy to implement. The most successful 1 -SVD method [12] employs 

singular value decomposition (SVD) to concentrate the signal power and turns the angle estimation 

problem into a sparse recovery via multiple measurement vectors (MMV). The methods in [13]-[14] 

utilize the vectorization of the covariance matrix as a single measurement vector (SMV) to reduce the 

recovery complexity. However, the methods above are all for one-dimensional DOA estimation. The 2D 

DOA estimation will require the dictionary for two-dimensional angle, which will add high computational 

burden and perhaps will make the recovery method fail.  

In this paper, a SR based algorithm for 2D DOA estimation with TPULA is proposed. The proposed 

algorithm has the following advantages: 1) it can achieve automatically paired two-dimensional 

estimations of angles, 2) it uses just one-dimensional dictionary, 3) it requires neither EVD nor prior 

knowledge of the source numbers, 4) it has better DOA estimation performance than the improved PM [11] 
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and DOA-matrix method [6], especially with low SNR. 

The remainder of this paper is organized as follows. Section 2 develops the data model for TPULA, and 

Section 3 presents the SR based algorithm for 2D DOA estimation and Cramer-Rao bound (CRB). The 

simulation results are presented in section 4 to verify the effectiveness of the proposed algorithm, while 

the conclusions are made in Section 5. 

Notation:  .
T
、  .

H
、  

1
.


 and  .


 denote transpose, conjugate-transpose, inverse, pseudo-inverse 

operations, respectively. diag(v) stands for diagonal matrix whose diagonal element is a vector v. MI  and 

MΠ  are M×M identity matrix and reverse identity matrix, respectively. ,   and  are the 

Hadamard product, Kronecker product and Khatri_rao product, respectively. 
1
  and 

2
  are l1 and l2 

norm, respectively. trace(.) means the trace of a matrix, [.]E is expectation operator and ( )angle  is to get 

the phase. ( )vec   is the vectorization operation.  

2. Data model 

As Fig.1 shows, the TPULA is located in the x-y plane with half-wavelength being the inter-element 

spacing, and it can be divided into two M-element subarrays. Assume that there are K far-field narrowband 

sources impinging on the arrays with the DOA being ( , ), 1,...,k k k K   , among which k  is the angle 

between the wave line and Y-axis and k  is the angle between the wave line and X-axis. The outputs of 

the two subarrays can be expressed as 

     1 1t t t x As n                             (1) 

                            2 2t t t x AΦs n                         (2) 

where 1[ ( ), , ( )]K A a a  denotes the direction matrix of subarray 1, and 
cos( ) [1, , ,kj

k e   a  

( 1)cos ] , 1,...,kj M Te k K    . 1cos cos( , , )Kj jdiag e e    Φ , and 
1 2

[ ( ), ( ), , ( )]( )
K

T
t t tt s s ss  is the 
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signal vector with ( )
k

ts  being the kth source.  1 tn  and  2 tn  are additive white Gaussian noise 

vectors with zeros mean and covariance matrix 
2

M I , and they are assumed to be independent to each 

other and uncorrelated with the signals. 

3. 2D DOA estimation for TPULA 

3.1 2D DOA estimation algorithm based on SR 

The cross covariance matrix of the two outputs is  

   12 2 1[ ]HE t tR x x                               (3) 

With the assumption above and substitute Eqs.(1)-(2) into Eq.(3), the cross covariance matrix can be 

expressed as 

12 sR AΦR A                                 (4) 

where     2 2

1[ ]= ( ,..., )H

s KE t t diag  R s s , and 
2 , 1,...,k k K   represents the signal power.  

Utilize the vectorization operation, the cross covariance vector is 

12 12

*

( )

( )

( )

s

vec

vec







r R

AΦR A

A A η

                              (5) 

where 1cos cos2 2

1=[ , , ]Kj j

Ke e     
η . The kth column of 

*
A A  is 

2* 1( ) ( ) M

k k   a a , which 

has only 2M-1 different items and its long length will add the complexity of the sparse recovery next. So a 

reduced-dimension transformation should be considered first. Introduce a vector
(2 1) 1( ) M

k
 b , which 

contains the 2M-1 different items in 
*( ) ( )k k a a  

( 1) cos cos cos ( 1) cos( ) [ ,..., ,1, , , ]k k k kj M j j j M T

k e e e e           b               (6) 

It can be derived that 

*( ) ( )= ( )k k k  a a Gb                             (7) 
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where 1[ ,..., ]T T T

MG G G  and ( 1) ( )[ , , ], 1,...,m M m M M M m m M    G 0 Π 0 .  Use the orthogonal form 

of 
H

G  as the reduced-dimension transformation matrix to avoid the noise power gain, then the data in (5) 

becomes 

1

2
12( )H H







C

r G G G r

WBη

                               (8) 

where 

1

2( )HW G G  is a diagonal matrix, and 1[ ( ),..., ( )]K B b b . The length of the data are 

reduced from M
2
 to 2M-1 via (8), and three advantages can be shown when compared to the original data 

in (1)-(2). 1, There is almost no array aperture loss, 2, the noise influence is reduced, 3, use only SMV to 

reduce the complexity in the sparse recovery next.  

Now the sparse representation can be employed for the angle estimation. Let 1 2, , , ( )L L K    be a 

sampling grid of all angles of interest, which obviously contains the true angles 1 2, , , K   . Construct 

a fat matrix 1[ ( ),..., ( )]L Θ b b , which is called the dictionary, and it can be indicated that Θ  

contains all the columns of B . Correspondingly, expand η  to a taller vector 
1Lρ , whose elements 

corresponding to the true angles keep the same with those in η , and the others are all-zero. It can be 

shown that =r WBη WΘρ , with ρ  being a K-sparse vector.  

Employ the sparse recovery technique, the positions and values of non-zero elements in ρ  will give the 

estimations of k  and k , respectively. But in practice, the cross covariance matrix in (3) can only be 

estimated via finite samples, that is    12 2 1

1

1ˆ
N

H

t

t t
N 

 R x x , which will cause the estimate error even 

with no noise, and that will influence the sparse recovery performance. To enhance the robustness the 

algorithm, the sparse recovery problem should be formulated as 

   
1

2

ˆm i n .

ˆ ˆ. .s t  

ρ

r WΘρ
                             (9) 
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where   is the up bound for the fitting error, whose selection will be detailed derived next. 

The mth column of 12R̂  is  

   *

12 2 1

1

1
ˆ

N

m m

t

t x t
N 

 r x                              (10) 

where  1mx t  is the mth element of  1 tx . According to [15], the signals are independent from sample 

to sample and circularly Gaussian distributed. Then it can be derived that 

       *

12 12 2 1 2 12
1 1

12 12 1 2

1
ˆ ˆ[ ] [ ]

1

N N
H H

m n m n

t p

H

m n nm

E E t x t p x p
N

N

 



 

r r x x

r r R R

               (11) 

where 1nmR  is the (n,m)th element of covariance matrix    1 1 1= [ ]HE t tR x x  and    2 2 2= [ ]HE t tR x x . 

From Eq.(11), it can be shown that the mean square error of 12r  is  

 12 12 12 12 1 2

1
ˆ ˆ[( )( ) ] ( )H TE

N
   r r r r R R                      (12) 

Then the mean square error of the reduced-dimension data r  will be 

12 12 12 12

1 2

ˆ ˆ ˆ ˆ[( )( ) ] [( )( ) ]

1
( )

H H H

T H

E E

N

    

 

r r r r C r r r r C

C R R C
               (13) 

When the samples are sufficiently large, use    1 1 1

1

1ˆ
N

H

t

t t
N 

 R x x  and    2 2 2

1

1ˆ
N

H

t

t t
N 

 R x x  to 

approximately replace 1R  and 2R  in Eq.(13), then the error bound   in Eq.(9) can be set as  

1 2

1 ˆ ˆ= ( ( ) )T Htrace
N

 C R R C                          (14) 

Finally, the fitting problem in Eq.(9) can solved by the sparse recovery tool: SPGL1 [16]. The positions of 

the non-zeros elements in the recovery sparse vector ρ̂  will give the estimations of the angles 

, 1,...,k k K  . Furthermore, the non-zero elements themselves will give the estimations of η , and the 

angles k  can be estimated via 

ˆ ˆ=arccos(- ( ( )) / )k angle k η                           (15) 
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where ˆ ( )kη  is the kth element of the estimated vector η̂ .  

As k  and k  are estimated corresponding to the same vector ρ̂ , they are automatically paired. 

Furthermore, the sparse recovery in (9) requires no prior knowledge of the source number, which is 

needed in improved PM [11] and DOA-matrix method [6]. 

Till now, we have achieved the proposal for the SR based algorithm for 2D DOA estimation with 

TPULA. The major steps are shown as follows: 

1)  Estimate the cross covariance matrix via    12 2 1

1

1ˆ
N

H

t

t t
N 

 R x x . 

2)  Utilize the vectorization operation and reduced-dimension transformation on 12R̂  to obtain the 

SMV r̂ . 

3)  Construct the one-dimensional dictionary Θ , calculate the error bound   via (14), and substitute 

them as well as r̂  into the sparse recovery tool to estimate the sparse vector. 

4)  Obtain the estimations of k  and k  by exploiting the positions and values of non-zero elements 

in the recovery sparse vector.  

3.2 Cramer-rao Bound (CRB) 

CRB is the low bound for angle estimation error based on the data model, and it can be used to measure 

the performance of the algorithms. Let =
 
 
 

A
Ω

AΦ
, according to [17], the CRB for the 2D DOA 

estimation with TPULA can be derived as 

 
2 1

ˆRe
2

H T

wCRB
N

 
   ΩD Π D P                        (16) 

where 1 1

1 1

,..., , ,...,K K

K K   

    
  

    

a a a a
D with ka being the kth column of Ω . 

ˆ ˆ
ˆ

ˆ ˆ

s s

w

s s

 
  
  

P P
P

P P
, 
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1

1ˆ
N

H

s

t

t t
N 

 P s s ;  
1

2

H H

M


  ΩΠ I Ω Ω Ω Ω . 

4. Simulation results 

Define root mean square error (RMSE) of the angle estimation as 

 
2 2

, ,1 1

ˆ1 1 ˆ[( ) ( ) ]
K D

k d k k d kk d
RMSE

K D
   

 
                  (17) 

where ,
ˆ

k d  and ,
ˆ

k d  are the estimations of k  and k  of the dth Monte Carlo trial, respectively. 

Assume that there are K = 3 uncorrelated sources with DOA being    1 1, 50 ,55   , 

   2 2, 65 ,40    and    3 3, 80 ,75   . M=8 and N=500 samples are collected, and D=500 trials 

are presented. 

Fig. 2 depicts the angle estimation results of the algorithm with SNR=5dB. It is shown that the 2D DOA 

can be accurately estimated. 

The angle estimation performance comparison between the proposed algorithm, improved PM, 

DOA-matrix method and CRB versus SNR and sample number are presented in Fig.3 and Fig.4, 

respectively. From Fig3, it can be indicated that the angle estimation performance of the proposed 

algorithm is better than the other two methods, especially with low SNR. Meanwhile, it can be shown from 

Fig.4 that the proposed algorithm still outperforms the other two methods with different sample numbers. 

The angle merger problem often occurs for source location, and when the sources have the same angle 

 , all the three methods will fail. But when the sources have the same angle  , the proposed algorithm 

can work well, while the other two will still fail. The estimation results when two sources have the same 

angle   are shown in Fig.5, which can demonstrate the opinion above. 
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5. Conclusion  

In this paper, a SR based 2D DOA estimation algorithm for TPULA has been proposed. Through the SR of 

the cross covariance vector via one-dimensional dictionary, the algorithm can obtain 2D angle estimation 

with automatically pairing match. The algorithm requires neither EVD of the covariance matrix nor prior 

information of the source number. Furthermore, it has better estimation performance than the improved 

PM and DOA-matrix method, especially with low SNR. 
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Fig.1 Illustration of the array geometry 
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Fig.2 Angle estimation results of the proposed algorithm 
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Fig.3 Angle estimation performance comparison versus SNR 
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Fig.4 Angle estimation performance comparison versus sample number (SNR=5dB) 
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Fig.5 Angle estimation results with the same Error! Objects cannot be created from editing field codes. 
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